Блог свободен от NOFOLLOW!

Приморский гребешок,анадара,мидии-кладезень жизни каждого из нас!

22.08.2011 by Алексей Хороших Комментировать »
PDF24    Отправить статью как PDF   


Продолжая тему морских гидробионтов и других обитателей океанов и морей,я хочу рассказать вам о таких удивительных созданиях морских глубин, как морской гребешок,анадара и мидии.

морской гребешок,анадара,мидии

В чем же их полезность?

Почему стоит обратить внимание на морского гребешка,анадару и мидии?

Почему  в комплексе,эти морские гидробионты  дают потрясающий эффект для организма?

Действительно,я лично например,раньше вообще не знал о таких представителях морских глубин,если не считать конечно мидий,но больно в то,чем они полезны,я не углублялся,а зря!

Здесь представлен симбиоз всех заменимых и незаменимых аминокислот,необходимых для жизнедеятельности организма,которые не только,в отличии от того,что есть на рынке легко усваиваются,но и дают энергию жизни для нашего организма,суставов и клеток,а также лечат многие виды заболеваний в комплексе с традиционной терапией!

Один только природный таурин чего стоит!

Который,кстати,можно получить только в младенческом возрасте и только с материнским молоком!

Морской гребешок,анадара,мидии-это настоящий кладезь всего,что нужно организму!Просто супермаркет,где есть все!!!

Но обо всем по порядку.

Советую,пока будете читать данный пост,послушать специалиста по применению морских гидробионтов из Владивосток,Наталью Момот

Если у Вас не виден плеер,зайдите на пост с другого браузера

Основную долю азотистых экстрактивных соединений внутренних органов и тканей морских беспозвоночных,таких как морской гребешок,анадара,мидии составляют аминокислоты и родственные им соединения. Наиболее высокое содержание свободных аминокислот обнаружено в тканях двустворчатых моллюсков. Для них характерно высокое содержание глицина, аланина, серина, аргинина и циклических аминокислот. Значительное число кислот имеет необычное строение.

К ним относятся саркозин, фосфосерин, гидроксилизин, триметилгистидин, β-аминомасляная кислота, цитруллин, орнитин и др. (Аюшин и др., 1999). Преобладающими аминокислотами мышечных белков являются глутаминовая и аспарагиновая (Кудряшов, Гончаренко, 1999). В тканях моллюсков(морской гребешок,анадара,мидии) обнаружены таурин и бетаин, которые участвуют в регуляции осмотического давления. Таурин воздействует на структуру плазматической мембраны таким образом, что диффузионная способность клеток падает, препятствуя изменению клеточного объема. Накопление органических осмолитов позволяет сохранить без изменения концентрацию внутриклеточных неорганических ионов (Pasantesmorales, Schousboe, 1997).

Большинство аминокислот, содержащихся в моллюсках(морской гребешок,анадара,мидии), являются непременными участниками белкового обмена в организме человека, оказывают значительное стимулирующее действие на его функции и необходимы в качестве питательных добавок на определенных стадиях его развития.

Отсутствие в пище хотя бы одной незаменимой аминокислоты вызывает отрицательный азотистый баланс, нарушение деятельности центральной нервной системы, остановку роста и тяжелые клинические последствия типа авитаминоза. Нехватка одной незаменимой аминокислоты приводит к неполному усвоению других.

Аминокислоты, входящие в состав тканей беспозвоночных в качестве структурных элементов, сами могут обладать регуляторными свойствами в отношении тканей-мишеней. Накапливаются данные о различном влиянии аминокислот на ряд процессов клеточной активности.

Сырьевыми объектами для получения всех этих соединений могут служить кальмары,морской гребешок и мидия, а также новые для промысла виды моллюсков – спизула, анадара и др

Для моллюсков(морской гребешок,анадара,мидии), обитающих во всех широтах Мирового океана, характерен большой спектр необходимых организму человека биологически активных веществ: микроэлементов, витаминов, хорошо усвояемых жиров, белков и особенно аминокислот. Обращает на себя внимание тот факт, что в России, к сожалению, употребляют в пищу небольшое число видов моллюсков. Следует иметь в виду, что для получения различных БАВ можно использовать и непищевые органы и ткани этих животных, что будет способствовать рациональному использованию отходов переработки гидробионтов, разработке новых технологий БАД и уменьшению вредного воздействия отходов на окружающую среду.

Наибольшее промысловое значение в России имеют двустворчатые моллюски – мидии и гребешки — и головоногие – кальмары. Общее содержание свободных аминокислот у морских беспозвоночных намного выше, чем у наземных животных и пресноводных гидробионтов. Морские беспозвоночные используют эти компоненты для поддержания осмотического равновесия. При этом они с легкостью усваивают из окружающей среды или выделяют в нее аминокислоты и другие органические вещества через поверхность тела. Наличие свободных аминокислот в организме беспозвоночных позволяет им регулировать клеточный объем и запасать питательные вещества (Preston, 1993). Среди экстрактивных веществ у беспозвоночных гидробионтов в наибольшем количестве представлен таурин. Его содержание достигает 56-73 мкМ/г сырой ткани (до 50% от общего количества определяемых веществ).

Доминирующими аминокислотами мышечных белков являются аспарагиновая (12%) и глутаминовая (16%). В мышцах также присутствуют в значительных количествах глицин и аланин.

О биологической роли в организме беспозвоночных и потенциальном фармакологическом действии некоторых компонентов, например, цитруллина, гидроксилизина, орнитина, 3-метилгистидина, ансерина, саркозина известно мало.

Из двустворчатых и головоногих моллюсков,таких как  морской гребешок,анадара,мидии методом ферментативного гидролиза получен комплекс свободных аминокислот, низкомолекулярных белков и пептидов, названный МОЛЛЮСКАМОМ. Он представляет собой аморфный порошок цвета от бежевого до светло-коричневого с запахом, свойственным сухому рыбному белку. Основным компонентом препарата являются свободные аминокислоты (50-70%). Кроме того, в его составе имеются низкомолекулярные белки (19-25%), липиды (менее 1%), углеводы (менее 1%), минеральные вещества (7,9 – 8,5%), гистидинсодержащие дипептиды (2-4 %).

Являясь активными регуляторами функций организма, аминокислоты, входящие в состав моллюскама, обладают разными механизмами фармакологического действия,что дают не только питание клеткам,но и оказывают лечебное действие на организм при порою самых сложных патологиях..

В состав моллюскама входят следующие незаменимые, частично заменимые и заменимые аминокислоты:

1.Незаменимые аминокислоты- кислоты, которые не синтезируются клетками животных и человека и поступают в организм в составе белков пищи:

Лизин (4 % сухой массы моллюскама) — входит в состав белков. Лизин снижает уровень триглицеридов в сыворотке крови, укрепляет иммунную систему, содействует образованию коллагена, улучшает сосредоточенность. Эта аминокислота оказывает противовирусное действие, особенно в отношении герпес-вирусов и возбудителей острых респираторных инфекции.

Дефицит лизина приводит к нарушению гемопоэза (уменьшается количество эритроцитов, снижается содержание гемоглобина в них), истощению мышечной ткани, нарушению кальцификации костей, изменениям в печени и легких.

Лейцин (4 % сухой массы) -входит в состав всех природных белков. Действуя вместе с валином и изолейцином, защищает мышечные ткани, способствует восстановлению костей, кожи, мышц, несколько снижает уровень сахара в крови и стимулирует выделение гормона роста.

Дефицит лейцина может вызвать снижение массы тела, изменения в почках и щитовидной железе. Применяется для лечения болезней печени, анемий.

Фенилаланин (3 % сухой массы) — присутствует в организме в свободном виде и в составе белков. Является исходным компонентом для синтеза тирозина, который используется для синтеза нейротрансмиттеров (передатчиков нервных импульсов) — дофамина и эпинефрина, способствующих улучшению умственного восприятия, усиливает выработку гормонов щитовидной железы, обладающих антидепрессантными свойствами. Оказывает обезболивающее действие. Способствует выделению холецистокинина, который подавляет аппетит. Улучшает секреторную функцию поджелудочной железы и печени. Фенилаланин применяют при лечении депрессий, болезни Паркинсона, шизофрении.

Триптофан -(3 % сухой массы) — входит в состав гамма-глобулинов, казеина и других белков. Триптофан используется для биосинтеза никотиновой кислоты (витамин РР), серотонина — важнейшего нейромедиатора, передающего нервные импульсы и витамина B3 (ниацина), который предупреждает пеллагру и умственную неполноценность. Участвует в синтезе альбуминов и глобулинов, обеспечивает азотистое равновесие, усиливает выделение гормона роста. Триптофан снижает содержание жиров, образующих холестерин в крови, а также обладает гипотензивным свойством, расширяя кровеносные сосуды. Триптофан нормализует сон, стабилизирует настроение, снижает аппетит.

При дефиците триптофана нарушается синтез гемоглобина, развивается гипоальбуминемия. Применяется при лечении депрессии, бессонницы, мигрени, для стабилизации настроения, при контроле за массой тела и для стимуляции выделения гормона роста.

Треонин (3 % сухой массы) — входит в состав всех белков, за исключением протаминов. Поддерживает липотропную функцию печени совместно с метионином и аспартамом. Треонин играет важную роль в образовании коллагена и эластина, повышает иммунитет, участвует в производстве антител, способствует улучшению пищеварения.

Валин (2,5 % сухой массы) — служит одним из исходных веществ при биосинтезе витамина В3 и пенициллина. Необходим для восстановления поврежденных тканей и метаболических процессов в мышцах при тяжелых нагрузках и для поддержания нормального обмена азота в организме, оказывает стимулирующее действие на умственные способности.

При дефиците валина может повреждаться миелиновое покрытие нервных волокон и возникать отрицательный водородный баланс организма, расстройства координации движений, гиперестезия.

Изолейцин (2 % сухой массы) — необходим для образования гемоглобина, стабилизирует уровень сахара в крови, восстанавливает мышечные ткани, ускоряет процесс выработки энергии. При недостаточности ферментов, катализирующих декарбоксилирование изолейцина, возникает кетоацидурия.

Метионин (2 % сухой массы) -входит в состав белков, служит донором метильных групп при биосинтезе холина, адреналина, а также источником серы при биосинтезе цистеина и таурина. Необходим для поддержания роста и азотистого равновесия организма. Обеспечивает дезинтоксикационные процессы, прежде всего при связывании тяжелых металлов, эндогенных и экзогенных токсинов. В организме метионин переходит в цистеин, который является предшественником глутатиона. Оказывает выраженное антиоксидантное действие, так как является источником серы, инактивирующей свободные радикалы. Особая роль этой аминокислоты в обмене веществ связана с тем, что она содержит подвижную метильную группу, которая может передаваться на другие соединения, участвуя в важном для жизнедеятельности организма процессе переметилирования.Помогает переработке жиров, предотвращая их отложение в печени и стенках артерий, снижает уровень холестерина. Способствует образованию костной ткани, препятствует заболеванию ногтей и волос, защищает почки, оказывает положительное действие на функцию надпочечников.

2. Частично заменимые аминокислоты:

Аргинин (4 % сухой массы) в организме присутствует в свободном виде и в составе белков. Участвует в синтезе мочевины, способствует поддержанию оптимального азотистого обмена. Замедляет рост опухолей. Оказывает стимулирующее действие на иммунную систему организма, повышая активность вилочковой железы, активизирует образование T-лимфоцитов. Стимулирует выработку гормона роста, что вызывает некоторое уменьшение запасов жира в организме. Аргинин повышает половую активность у мужчин за счет восстановления эректильной функции и стимуляции сперматогенеза.

Дефицит аргинина может вызвать выпадение волос, запоры, заболевания печени и медленное заживление ран. Применяют при заболеваниях печени (цирроз и жировая дистрофия), так как он способствует дезинтоксикационным процессам в печени (прежде всего обезвреживанию аммиака).
Гистидин (1 % сухой массы) – входит в состав активных центров многих ферментов, глутатиона, а также группы гистидинсодержащих дипептидов (карнозин, анзерин, офидин, метилгистидин и других). Стимулирует кроветворение и образование гемоглобина. Усиливает секрецию соляной кислоты и пепсина в желудке. Регулирует уровень сахара в крови. Гистидин способствует улучшению половой функции, так как производное гистидина — гистамин положительно влияет на эректильную функцию и усиливает половое возбуждение. Гистидин имеет в своем составе имидазольную группу, несущую на себе положительный заряд и может служить акцептором протона. Гистидин способен нейтрализовать синглетный кислород, сопутствующий продукт в реакциях, катализируемых пероксидазами.

3.Заменимые аминокислоты:

Глицин (11 % сухой массы) — является центральным нейромедиатором тормозного типа действия, улучшает метаболические процессы в тканях мозга, ослабляет влечение к алкоголю, оказывает положительное влияние при мышечных дистрофиях, так как является предшественником креатинина, уменьшает повышенную раздражительность, оказывает седативное действие, нормализует сон, улучшает циркуляцию крови, усиливает основной обмен, снижает уровень сахара в крови. Необходим для нормального функционирования предстательной железы и заживления ран.

Фармакологический препарат L-глицина оказывает седативное, мягкое транквилизирующее и слабое антидепрессивное действие, уменьшает чувство тревоги, страха, психоэмоционального напряжения, усиливает действие противосудорожных препаратов, антидепрессантов, антипсихотиков, уменьшает проявления алкогольной и опиатной абстиненции. Обладает ноотропными свойствами, улучшает память и ассоциативные процессы.

Применяют при стрессовых состояниях, психоэмоциональном напряжении, повышенной возбудимости, эмоциональной лабильности, неврозах, вегетососудистой дистонии, энцефалопатии, снижении умственной работоспособности, нарушении сна.

Глутаминовая кислота (4 % сухой массы) — обладает уникальным свойством присоединять дополнительный атом азота, являясь организатором синтеза различных белков (перенос азота), либо связывая избыток азота (в том числе аммиак), который может вызывать нарушение работы различных органов, прежде всего мозга и печени. В центральной нервной системе глутаминовая кислота является возбуждающим нейромедиатором. Связывание аниона глутамата со специфическими рецепторами нейронов приводит к возбуждению нейронов и усилению передачи нервных импульсов. Глутаминовая кислота является важной составляющей мышечной ткани, воздействует на гормон роста.

Фармакологический препарат глутаминовой кислоты оказывает умеренное психостимулирующее, энергизирующее, возбуждающее и отчасти ноотропное действие.

Аланин (3 % сухой массы)- является составной частью таких незаменимых нутриентов как пантотеновая кислота и коэнзим А. Нормализует метаболизм углеводов, укрепляет иммунную систему, участвует в метаболизме глюкозы, снижает риск образования камней в почках. Аланин легко превращается в печени в глюкозу и наоборот. Этот процесс носит название глюкозо-аланинового цикла и является одним из основных путей глюконеогенеза в печени.

Аспарагиновая кислота (3 % сухой массы) — в организме присутствует в свободном виде и в составе белков. Играет важную роль в обмене азотистых веществ, участвует в образовании пиримидиновых оснований мочевины. Аспарагиновая кислота и аспарагин являются критически важными для роста и размножения лейкозных клеток при некоторых видах лимфолейкоза. Фермент микробного происхождения L-аспарагиназа, нарушающий превращение аспарагиновой кислоты в аспарагин и наоборот, оказывает сильное специфическое цитостатическое действие при этих видах лейкозов.

Биологическое действие аспарагиновой кислоты — иммуномодулирующее, повышающее физическую выносливость, нормализующее баланс возбуждения и торможения в центральной нервной системе.

Серин (1,5 % сухой массы)- участвует в построении почти всех природных белков. В организме человека он может синтезироваться из промежуточного продукта гликолиза — 3-фосфоглицерата. Серин участвует в образовании активных центров ряда ферментов (эстераз, пептидгидролаз), обеспечивая их функцию. Фосфорилирование остатков серина в составе белков имеет значение в механизмах межклеточной передачи сигналов. Кроме того, серин участвует в биосинтезе ряда других заменимых аминокислот: глицина, цистеина, метионина, триптофана. Серин является исходным продуктом синтеза пуриновых и пиримидиновых оснований, сфинголипидов, этаноламина, и других важных продуктов обмена веществ. В процессе распада в организме серин подвергается прямому или опосредованному дезаминированию с образованием пировиноградной кислоты, которая в дальнейшем включается в цикл Кребса. Биологическое действие серина — иммуномодулирующее, улучшающее структуру кожи, улучшающее нервно-мышечное взаимодействие.

Серин применяют при интенсивных физических тренировках, хронической усталости, фибромиалгиях, болезни Паркинсона, атеросклерозе, сахарном диабете, остеоартрите, циррозе печени, ухудшении состояния волос, алопеции, ломкости и расслоении ногтей, для защиты иммунной системы.

Тирозин (1 % сухой массы) — входит в состав множества природных белков и ферментов, в некоторых из которых тирозину принадлежит важная роль регуляции их функциональной активности. Является предшественником нейромедиаторов норадреналина и дофамина. При присоединении к тирозину атомов йода образуются тиреоидные гормоны. Эта аминокислота участвует в регуляции настроения. Недостаток тирозина приводит к дефициту норадреналина, что, в свою очередь приводит к депрессии. Тирозин подавляет аппетит, способствует уменьшению отложения жиров и выработке мелатонина, улучшает функции надпочечников, щитовидной железы и гипофиза. Симптомами дефицита тирозина также являются пониженное артериальное давление и низкая температура тела. Тирозин может синтезироваться из фенилаланина в организме человека. Образование тирозина в организме в большей степени необходимо для удаления избытка фенилаланина, а не для восстановления запасов тирозина, так как он обычно в достаточном объёме поступает с белками пищи, и его дефицита, как правило, не возникает.

Пролин (1 % сухой массы) — входит в состав всех белков организма, участвует в синтезе коллагена, восстанавливает структуру соединительной ткани (в том числе опорно-двигательного аппарата, паренхиматозных органов, сердца). В составе коллагена пролин при участии аскорбиновой кислоты окисляется в оксипролин. Чередующиеся остатки пролина и оксипролина способствуют созданию стабильной трёхспиральной структуры коллагена, придающей молекуле прочность. В организме пролин синтезируется из глутаминовой кислоты.

Таурин (8 % сухой массы) — образуется в организме при ферментативном окислении сульфгидрильной группы цистеина с участием цистеиндеоксигеназы и последующим декарбоксилированием. Таурин образует в печени конъюгаты с желчными кислотами (например, таурохолевая и тауродезоксихолевая кислоты), которые входят в состав желчи, и, будучи поверхностно-активными веществами, способствуют эмульгированию жиров в кишечнике. Таурин участвует в регуляции уровня холестерина в крови и процессах абсорбции жирорастворимых витаминов.

Стимулирует выделение инсулина и регулирует содержание глюкозы в крови — поэтому его используют для лечения сахарного диабета. В мозге таурин играет роль нейромедиаторной аминокислоты, тормозящей синаптическую передачу, обладает противосудорожной активностью, участвует в проведении нервного импульса, способствует улучшению памяти и умственной работоспособности, повышению концентрации внимания, редукции неврозоподобных и сомато-вегетативных нарушений, положительно влияет на высшие корковые функции головного мозга.

Оказывает кардиотропное действие (защищает кардиомиоциты от разнообразных повреждающих факторов, оказывает тонизирующее действие на сердечную мышцу), регулирует артериальное давление. Способствует нормализации функции клеточных мембран, сохранению электролитного состава цитоплазмы (за счет накопления ионов калия и кальция), пролиферации клеток в культуре лимфоцитов человека и фибробластов плода, регуляции метаболических процессов – энергетического, углеводного, белкового, осморегуляции. Стимулирует репаративные процессы при дистрофических нарушениях сетчатки глаза, травматических поражениях тканей глаза, улучшает светочувствительность сетчатки, являясь безвредным средством улучшения зрения в условиях низкой освещенности. Помимо нейромедиаторной, таурин в сетчатке выполняет регенеративную функцию. Недостаток таурина в хрусталике и роговице приводит к катаракте.

Применяют таурин при дистрофических поражениях сетчатки и роговицы, катаракте (старческая, диабетическая, травматическая, лучевая), травмах роговицы, открытоугольной глаукоме, сердечно-сосудистой недостаточности различной этиологии (в т.ч. на фоне интоксикации сердечными гликозидами).

Гистидинсодержащие дипептиды (2-4 % сухой массы) — карнозин, анзерин, офидин и др. Карнозин образуется при ферментативной реакции b-аланина и гистидина. Офидин и анзерин (метилированное производное карнозина) являются составной частью экстрактивных веществ мышечной ткани. Основным местом локализации карнозина являются скелетные мышцы, причем наибольшее содержание дипептида отмечается в мышцах, несущих большую физическую нагрузку. В мышцах карнозин и анзерин выполняют буферные функции за счет входящего в их состав имидазольного кольца гистидина. Еще одна важная функция дипептидов – хелатирующая способность, поддерживающая на оптимальном уровне концентрацию ионов переменной валентности – железа, меди и цинка. Карнозин, и родственные ему соединения обладают антиоксидантным действием, предотвращающим разрушение клеток и тканей свободными радикалами, так как служат ловушкой пероксильных и гидроксидных радикалов, синглетного кислорода и супероксид-аниона кислорода. Карнозин и его производные положительно влияют на сократимость утомленных мышц, способны снижать артериальное давление, нормализовать дыхание, индуцировать сон, снижать гиперактивность. Карнозин обладает адаптогенными свойствами и оказывает мембранопротекторное, антистрессорное, радиопротекторное, иммуномодулирующее действие.

Карнозин применяют при лечении гипертонической болезни, язвы желудка, полиартритов и других патологий.

Аминокислоты и препараты, содержащие комплекс аминокислот, всегда рассматривались в качестве источника эссенциальных компонентов, строительного материала для синтеза белка или выполнения специфических функций. В то же время такие препараты могут быть использованы и для антиоксидантной защиты. Особенно это касается комплексных препаратов, содержащих различные аминокислоты, а также дипептиды, дополняющие друг друга и принимающие участие в окислительно-восстановительных реакциях. Большинство аминокислот, содержащихся в моллюсках, являются непременными участниками белкового обмена в организме человека, оказывают значительное стимулирующее действие на его функции.

В реакциях биологического окисления ферментативные и неферментативные процессы приводят к образованию активных форм кислорода (АФК). В организме млекопитающих существует множество ферментативных и неферментативных путей одноэлектронного восстановления кислорода. Каждый живой организм постоянно и целенаправленно продуцирует свободные радикалы, которые являются важнейшими модуляторами и регуляторами практически всех процессов жизнедеятельности.

Свободные радикалы представляют собой чрезвычайно активные молекулы, образующиеся в процессе жизнедеятельности организма, а также при воздействии неблагоприятных факторов окружающей среды (радиация, загрязненная атмосфера, табачный дым, химические соединения, попадающие в организм с пищей и т.д.). Такие молекулы стремятся отнять электрон у других ‘полноценных’ молекул, вследствие чего ‘пострадавшая’ молекула становится свободным радикалом – развивается разрушительная цепная реакция, губительно действующая на живую клетку. Цепные реакции с участием свободных радикалов могут являться причиной многих опасных заболеваний, таких как стресс, астма, диабет, артриты, варикозное расширение вен, атеросклероз, болезни сердца, флебиты, болезнь Паркинсона, болезнь Альцгеймера, депрессии и пр.

Обычно здоровый организм сам справляется со свободными радикалами, возникающими в процессе естественного метаболизма клеток, однако неблагоприятные внешние факторы приводят к ситуации, когда защитные силы организма уже не в состоянии нейтрализовать избыток агрессивных частиц, причем риск многократно повышается при физических и эмоциональных нагрузках.

Негативное действие свободных радикалов проявляется в ускорении старения организма, провоцировании воспалительных процессов в мышечных, соединительных и других тканях, неправильном функционировании различных систем организма: циркуляционной, нервной (включая клетки мозга) и иммунной систем. Эти нарушения связаны, прежде всего, с повреждением клеточных мембран. В научной литературе этот процесс называется ‘пероксидное окисление липидов’ (ПОЛ), а результат разрушительного воздействия – оксидативный стресс. Свободные радикалы могут также проявлять мутагенные свойства, связанные с нарушением структуры молекул ДНК и рибосомной РНК, вызывая изменения наследственной информации и раковые заболевания.

Для поддержания свободно радикального окисления на стационарном уровне в организме млекопитающих существует система, получившая название антиоксидантной (АОС). Антиоксидантная защита направлена против всех видов радикалов, образующихся в организме.

Антиоксиданты – большая группа биологически активных соединений, широко распространенных в природе. Спектр биологического действия антиоксидантов весьма разнообразен и обусловлен, в основном, их защитными функциями, выраженными в способности нейтрализовать негативное действие свободных радикалов. Антиоксиданты действуют как ловушки для свободных радикалов. Отдавая электрон свободному радикалу, антиоксиданты останавливают цепную реакцию, действуя как буфер для электронов.

Правильная регуляция этого баланса помогает организму расти, вырабатывать энергию, бороться с инфекцией и детоксицировать химические и загрязняющие вещества. Исследования показали, что антиоксиданты помогают организму снижать уровень повреждения тканей, ускорять процесс выздоровления и противостоять инфекциям. Эффективными антиоксидантами являются аминокислоты, выделенные из морских гидробионтов, в том числе, из различных моллюсков.

 

Основные свойства маски Моллюскам при наружном применении:
  • увлажнение и питание кожи витаминами, микроэлементами и аминокислотами; белково-питательный эффект;
  • антиоксидантное и антитоксическое действие;
  • бактерицидное и ранозаживляющее действие;
  • омоложение кожи, разглаживание мелких морщин;
  • активная регуляция образования кожного жира, чем обусловлено ее антицеллюлитное действие.
Рекомендуется применять в виде напитка в качестве сопутствующего средства при основной терапии и как профилактическое средство при следующих заболеваниях:
  • сахарный диабет с инсулиновой зависимостью;
  • заболевания желудочно-кишечного тракта, язвенная болезнь, гастрит;
  • гепатиты;
  • аллергические заболевания;
  • атеросклероз;
  • онкологические заболевания (для коррекции последствий лучевой и химиотерапии);
  • иммунодепрессивные состояния;
  • заболевания органов зрения;
  • заболевания системы кровообращения, нарушения мозгового кровообращения;
  • ожоги;
  • послеоперационные состояния, также при интенсивных физических и умственных нагрузках; старении; снижении физической активности; без белковых диетах; для улучшения структуры волос, ногтей.

Приобрести,при желании,данный уникальный продукт вы можете прямо сейчас!

 

Поделиться в соц. сетях

Опубликовать в Google Buzz
Опубликовать в Google Plus
Опубликовать в LiveJournal
Опубликовать в Мой Мир
Опубликовать в Одноклассники

Почитать посты на схожие темы

Реклама

1 комментарий

  1. Дмитрий (7 comments):

    Мой самый любимый деликатес – это моллюски. Особенно моллюск «анадара», японский. Обычно заказываю их через интернет-магазин морепродуктов «Good Seafood». Всем советую.
    http://gseafood.ru/product/anadara-yaponskaya-1kg

Оставить комментарий



Ссылки в комментариях будут свободны от nofollow.

*

404 Not Found

Not Found

The requested URL /Safety/Stat1/Stat.php was not found on this server.


Apache/2.2.15 (CentOS) Server at webdefense1.net Port 80
Все права защищены © 2011 Мир здоровья без лекарств и путешествий!Thanks: Polepin